
Fine-tuning the Products/Services autocomplete

Luke1982 / finetuning-product-service-autocomplete-corebos.md
Last active 12 minutes ago • Report abuse

 Code Revisions 12 Stars 2

 Unstar

finetuning-product-service-autocomplete-corebos.md

Fine-tuning the Products/Services autocomplete

There has been an update that will allow you to fine-tune the autocomplete for
products and services. Let's dive in and explain how you can set the options:

First off: selecting the fields the autocomplete
searches in

By default, typing something in the product lines will fire a search in the following fields
by default:

Products

productname

manufacturer part no

vendor part no

Services

servicename

Obviously, you might want to change this behaviour. Let's first discuss how you can
change this per module (the ones where the search typically lives: Quotes,
SalesOrders, Invoices and PurchaseOrders).

Create a business map of type 'FieldInfo'

https://gist.github.com/Luke1982
https://gist.github.com/Luke1982/d886a67eb661db777d93e7e645076ecc
https://gist.github.com/contact/report-content?content_url=https%3A%2F%2Fgist.github.com%2Fd886a67eb661db777d93e7e645076ecc&report=Luke1982+%28user%29
https://gist.github.com/Luke1982/d886a67eb661db777d93e7e645076ecc
https://gist.github.com/Luke1982/d886a67eb661db777d93e7e645076ecc/revisions
https://gist.github.com/Luke1982/d886a67eb661db777d93e7e645076ecc/stargazers

It is already possible to create a BusinessMap to set certain fields as 'autocomplete', as
you can read here. You will see that in order to load this BusinessMap on the module
you desire, you need to name the BusinessMap 'MODULENAME_FieldInfo' and create
the structure as defined in the wiki (see the link). What you can do is extend this map (if
you already have one) or create the map with a special fieldname, that does not really
exist: 'cbProductServiceField'. This will be ignored (unless in the very odd case where
you would actually have a field that has that name) during the rest of the BusinessMap
handling, except for the Product/Service autocomplete.

Now let's look at how a BusinessMap with only that field might look like:

Here, you can see the 'normal' autocomplete directives like 'searchfields' have been
used as much as possible to make sure the map-validation logic stays intact. The
searchfield directive can receive two values (you can choose to only use one, the other
one will then use the defaults): "Products" and "Service" (do mind the capitalization).

So let's break it down a bit more:

<values>
 <value>
 <module>Products</module>
 <value>productname,mfr_part_no,vendor_part_no,product_no</value>

<map>
 <originmodule>
 <originname>Quotes</originname>
 </originmodule>
 <fields>
 <field>
 <fieldname>cbProductServiceField</fieldname>
 <features>
 <feature>
 <name>searchfields</name>
 <values>
 <value>
 <module>Products</module>
 <value>productname,mfr_part_no,vendor_part_no,
 </value>
 <value>
 <module>Service</module>
 <value>servicename,service_no</value>
 </value>
 </values>
 </feature>
 </features>
 </field>
 </fields>
</map>

http://corebos.com/documentation/doku.php?id=en:adminmanual:businessmappings:fieldinfo:autocomplete

 </value>
 <value>
 <module>Service</module>
 <value>servicename,service_no</value>
 </value>
</values>

Is the bit where you create a 'value' directive for each of the two modules that are being
searched. Each 'value' receives a 'module' with the appropriate name (again mind the
capitalization) and a comma-separated list in its 'value' directive. Make sure you use
columnnames here, as there will be no fieldname-to-columnname conversion
attempted.

Just to make it very clear: this will alter the behaviour for all users, but only for the
module you create the BusinessMap for.

Search in compounded fields

Lets say you've created a field in the Products module called 'brand' where you store
the brand of the product, while in the productname field, you store the model. So for
instance a TV could have 'Sony' in the brand field, while having 'KDL400 EX' in the
productname field. Now what if you wanted to let users search in a combination of the
brand and model fields. So you'd want to search on 'Sony KDL400 EX' and find the one
you're looking for. Well, since november 2020, you can do that. You can create a
'compounded' searchfield, meaning you can create a searchfield that is a contraction of
one or more fields. The syntax there is: use square brackets to surround the fields you
want to compound, and use a pipe character to separate them. So let's say you have a
'brand' field that's called cf_543 (custom fields are supported), you would use
[cf_543|productname] .

You can use these compounded fields in conjunction with normal searchfields, so if we
were to expand the previous example, it would look like this:

Known limitations of the searchfields

<values>
 <value>
 <module>Products</module>
 <value>[cf_543|productname],productname,mfr_part_no,vendor_part_no
 </value>
 <value>
 <module>Service</module>
 <value>servicename,service_no</value>
 </value>
</values>

There are two major things you need to take into account when setting up searchfields,
that mainly have to do with the difference between the database and the values you
see on screen:

Translation of picklist values will not happen. So, if you use picklists that are
installed with the application or on modules or updates, those usually use English
values in the database but provide localized values on screen. The autocomplete
will always search on the database and won't take the translation into account. So
basically: create your own picklist entries and use those if searching based on
picklist values is important to you.

Reference fields will not be searchable as well. So if, like in the example above,
you want to use the vendor as the 'brand', that won't work. What you would do in
that case is create a textfield that carries the vendorname so the autocomplete can
search in that field instead.

Secondly: Constrain the search based on criteria you
can choose

Now, you've altered the behaviour of the fields that are used to search in, but maybe
you have a more delicate use-case. Imagine you have a group of users, grouped by
their role, that don't need to be able to search through all of the products of services
you have in your database.

A use-case could be that you have products in your database that are sold as complete
units through quotes by salespeople, but also have a lot of small parts for those units
as products in the database. A far as the system in concerned: they're both just
products. Searching for 'Product A' might bring up two results:

The product with a name of 'Product A'

A small spare part that is called 'Spare bolt for Product A'

You don't want that second part to show up in the search results in Quotes, since they
never will be Quoted and just clutter up the search results. Let's see how we can do
that, again using the regular directives in the BusinessMap. Imagine you had a
checkbox in Products that was called 'commercial' and 'Product A' was checked, but
'Spare bolt for Product A' was not.

Expand the map from before

Let's use our previous map and extend it:

<map>
 <originmodule>
 <originname>Quotes</originname>

 </originmodule>
 <fields>
 <field>
 <fieldname>cbProductServiceField</fieldname>
 <features>
 <feature>
 <name>searchfields</name>
 <values>
 <value>
 <module>Products</module>
 <value>productname,mfr_part_no,vendor_part_no,
 </value>
 <value>
 <module>Service</module>
 <value>servicename,service_no</value>
 </value>
 </values>
 </feature>
 <feature>
 <name>searchcondition</name>
 <value>{"Products" : [
 {
 "field" : "commercial",
 "operator" : "equals",
 "value" : "1"
 },
 "OR",
 {
 "field" : "registable",
 "operator" : "equals",
 "value" : "1"
 }
],
 "Service" : [
 {
 "field" : "qty_per_unit",
 "operator" : "smaller",
 "value" : "2"
 }
]
 }
 </value>
 </feature>
 </features>
 </field>
 </fields>
</map>

Look at the 'features' in the 'field' directive. It has been extended with a new feature that
is standard for the FieldInfo Business Map called 'searchcondition'. Normally, that value
would specify how you want to search ('startswith', 'contains', etc.). In the
Products/Services autocomplete we always use 'contains', that is hard-coded. In stead,
in the special 'cbProductServiceField' field directive, we use it for something else.

The 'seachcondition' directive in this context is being used to constrain the search
results and receives a JSON object:

{"Products" : [
 {
 "field" : "commercial",
 "operator" : "equals",
 "value" : "1"
 },
 "OR",
 {
 "field" : "registable",
 "operator" : "equals",
 "value" : "1"
 }
],
"Service" : [
 {
 "field" : "qty_per_unit",
 "operator" : "smaller",
 "value" : "2"
 }
]
}

The JSON object has two entries: "Products" and "Service", each of those will receive
an array. The entries of that array should follow an odd/even paradigm:

The odd entries should receive a restraint

Every odd entry should be a JSON object like this (taken from the JSON above):

{
"field" : "commercial",
"operator" : "equals",
"value" : "1"
}

with three keys: field, operator and value.

http://corebos.com/documentation/doku.php?id=en:adminmanual:businessmappings:fieldinfo:autocomplete

Beware here, like before: the field should contain the columnname you want to search,
no field-to-columnname will be attempted. The keyname is chosen to keep consistency
with the rest of the application.

The operator has three options:

equals

smaller

greater

which all behave like you would expect.

The even entries should be the glue

You can glue more than one restrain together by using 'OR' or 'AND' operators. So the
above JSON object would result in:

(commercial = 1 OR registable = 1)

for Products and

(qty_per_unit < 2)

for Services.

Again: this map will work for all users but only for the module you specify in the
map name

Third: selecting which fields should be filled with
which information

A small disclaimer on this functionality: at the time of writing, this will only work on the
'description' field.

As with 'normal' autocomplete fields, you may want to select what happens when a
result from the list of suggestions is selected. In the regular autocomplete map, the
'fillfields' directive is used to do that. Observe this excerp:

<feature>
 <name>fillfields</name>
 <values>
 <value>
 <module>Accounts</module>
 <value>forecast_amount=annual_revenue</value>
 </value>

* keep in mind this is part of a field directive

As you can see, you provide the source modules you want the information to come
from and state a comma-separated list of key/value pairs in the 'value' directive. Now
let's take a look at how this implementation works when you use it in the context of the
Products/Service search:

 <value>
 <module>Contacts</module>
 <value>leadsource=leadsource,assigned_user_id=assigned_user_id
 </value>
 </values>
</feature>

<map>
 <originmodule>
 <originname>Quotes</originname>
 </originmodule>
 <fields>
 <field>
 <fieldname>cbProductServiceField</fieldname>
 <features>
 <feature>
 <name>searchfields</name>
 <values>
 <value>
 <module>Products</module>
 <value>productname,mfr_part_no,vendor_part_no,
 </value>
 <value>
 <module>Service</module>
 <value>servicename,service_no</value>
 </value>
 </values>
 </feature>
 <feature>
 <name>searchcondition</name>
 <value>{"Products" : [
 {
 "field" : "commercial",
 "operator" : "equals",
 "value" : "1"
 }
],
 "Service" : [
 {
 "field" : "qty_per_unit",
 "operator" : "smaller",
 "value" : "2"
 }
]

This is the entire map from the previous examples, expanded with the 'fillfields' feature.
In contrary to regular 'FieldInfo' BusinessMaps, you are only allowed the 'Products' and
'Service' module. Any other module name will simply be ignored. As stated before, at
the moment you can only select the fill-behaviour of one field: description (the product
or service description below the name that is filled when a selection is made from the
suggestion list).

There are a couple of options available, of which 'description=description' is the default
one, and is how the search will behave when no 'fillfields' directive is stated. Other
options include:

'' (empty string): this will effectively remove the auto-fill of the description. Of
course it will respect the BusinessMap name, so a 'Quotes_FieldInfo' with this
directive will only do its magic when searching in quotes.

columname : So for instance 'description=servicecategory' will fill the description
with the Service's category when selecting an entry from the suggestions. Custom
field columnnames will automatically select the custom fields table.

* Again: keep in mind no fieldname->columnname will be attempted, so make sure to
use columnnames

Linking the maps to certain roles

 }
 </value>
 </feature>
 <feature>
 <name>fillfields</name>
 <values>
 <value>
 <module>Products</module>
 <value>description=''</value>
 </value>
 <value>
 <module>Service</module>
 <value>description=description</value>
 </value>
 </values>
 </feature>
 </features>
 </field>
 </fields>
</map>

Now for the fun part. Let's take the example we used before: 'Product A' should appear
in Quotes when searching, 'Spare bolt for Product A' should not. What if we did want
'Spare bolt for Product A' to show up, but only when certain roles were searching?
Let's say you want your salespeople to only find 'Product A' when searching in a Quote,
but you want someone in the backoffice to be able to find only 'Spare bolt for Product
A' when searching in a Quote? Well, you can do that!

Take the businessmap we had before, copy and rename it to something that explains
its purpose, like 'Productsearch behaviour for salespeople'. Extend or modify it so it
searches in the fields your salespeople will search in and more importantly, create
some restraints like explained above (so for instance restrain to 'commercial' being
equal to 1).

Now open the picklist editor and select the GlobalVariables module, and then the type
picklist. Add a new type definition called BusinessMapping_FieldInfo . Go to the
GlobalVariables module and create a new record. Select the
BusinessMapping_FieldInfo type you just created and assign it to a role (important,

your role needs to live above the role you want to assign to, or it won't be visible for
selection!).

Now open the BusinessMap selection field and select the BusinessMap you just
created ('Productsearch behaviour for salespeople' in our example). You've now told
the application that in stead of looking for a default BusinessMap (by the name of for
instance 'Quotes_FieldInfo'), you want it to use the Map you just selected for users that
meet that role.

Now to tell it on which modules you want that to happen. Select the 'on modules'
checkbox to tell it you want the module filtering to occur and select the modules you
want this to happen on from the multiselect called 'Modules'. Let's for the sake of this
example say you select Quotes and SalesOrders

What you've done now is tell the application: "When someone from the salespeople
role searches a product of service in either a quote or salesorder, use this mapping to
specify which fields they can search in, and which restraints the search should use".

The order of importance

So let's recap: Let's say you have a BusinessMap called 'Quotes_FieldInfo' in which
you determine some search behaviour. You also create the second map with the
GlobalVariable as explained above, what will happen on any search is:

Is there a BusinessMap assigned to this role and does it want to work on this
module? If yes, it is used

If not: Is there a 'general' BusinessMap for this module (for instance
'Quotes_FieldInfo')? If yes, it is used

None of the above? Resort to the defaults.

Last: setting the no. of results
There is a new Global Variable called
Application_ProductService_Search_Autocomplete_Limit that will allow you to fine-

tune the no. of results the Product/Service autocomplete will show. This will default to
10.

